Испытания питьевой воды. Анализ питьевой воды: все, что вы хотели знать об этом. Стоимость химического анализа воды

Исследования помогают установить химический состав и свойства воды и выявить концентрацию всех вредных примесей. Это необходимо для обеспечения любого объекта строительства качественной питьевой водой, а также для расчетов и выбора подходящего очистительного и распределительного оборудования. От состава и свойств воды зависит расчетный срок службы прокладываемых коммуникаций и здоровье людей, использующих ее для питьевых или бытовых нужд. Именно по этой причине одним из основных этапов геоизысканий является обязательное проведение различных анализов воды из скважины, которое назначается застройщиками любых объектов, в том числе и промышленных.

При этом стоит учесть, что подобные лабораторные исследования рекомендуется проводить систематически, так как химический состав воды подвержен изменениям под действием внешней среды.
Выделяют 3 основных вида показателей:

  • Физические показатели, которые позволяют оценить основные свойства воды, а именно ее вкус, цвет, мутность, температурные данные, запах и информацию о взвешенных частицах в составе.
  • Химические показатели. Они позволяют охарактеризовать состав воды за счет оценки концентрации основных ионов. Также в процессе исследования определяют основные показатели жесткости, уровень pH, число общей минерализации и содержание отдельных ионов, отвечающих за качество воды, фтора, железа, калия и т. д. Стоит отметить, что избыток железа влияет на цвет воды и вызывает образование осадка в трубах, который может негативно влиять на сантехническое оборудование и трубы. В то время как избыток меди влияет на вкусовые качества.
  • Бактериологические показатели также отвечают за качество воды и позволяют своевременно определить заражение различными микроорганизмами. Чаще всего бактерии попадают в жидкость под воздействием внешних факторов и человеческой жизнедеятельности. Например, заражение может произойти при попадании сточных вод, при контакте воды с животными и при загрязнении различными промышленными отходами.

Показатели качества воды определяются:

  • химическим анализом-
  • органолептическим исследованием, в результате которого определяется жесткость и наличие железа-
  • токсическим анализом, направленным на определение наличия опасных веществ-
  • микробиологическим исследованием, позволяющим определить содержание бактерий в скважине, водоеме или колодце.

Результаты проверки указывают на количество определенных веществ в разных единицах измерения. При знании норм можно самостоятельно оценить основные показатели. Если все в норме, то жидкость можно считать чистой и пригодной к использованию. В противном случае нужно проводить дополнительную фильтрацию. Обычно в результатах указывают предельно допустимую концентрацию (ПДК) примесей. Этот показатель говорит, что количество определенного вещества не несет негативного воздействия. ПДК прописываются в нормативных документах.

Химический анализ воды

Исследование производят для установления точного химического состава воды, а также для оценки основных свойств. Характер исследования может отличаться в зависимости от поставленных задач. Химический анализ воды подразделяют на общий и специальный. Во время общего анализа воды определяется ее общая характеристика, необходимая для ее классификации, а также для получения информации о содержании отдельных солей и ионов. Данные результаты имеют широкое назначение.

Согласно СанПиН 2.1.4.559-96, на сегодняшний день в результате исследования воды обязательно устанавливают концентрацию ионов кальция, магния, натрия, которые наряду с другими составляют основу шестикомпонентного анализа, также позволяющего определить содержание железа и уровень pH. Исследование не включает в себя определение газового состава.

Краткое описание основных исследуемых в процессе химического анализа показателей:

  • Водородный коэффициент (pH) зависит от концентрации ионов.
  • Жесткость воды определяют исходя из концентрации в ней солей кальция и магния.
  • Щелочность базируется содержанием гидроксидов, анионов слабых кислот, бикарбонатов и карбонатов.
  • Хлориды связаны с присутствием в жидкости обычной соли. При наличии с хлоридами азотсодержащих веществ есть угроза загрязнения централизованного водоснабжения бытовыми отходами.
  • Сульфаты могут вызывать проблемы пищеварительной системы.
  • Элементы, содержащие азот, показывают присутствие в жидкости животной органики. К ним относится аммиак, нитриты, нитраты.
  • Фтор и йод. Оба вещества несут негативные последствия как при избытке, так и при дефиците. Первое вещество может вызвать рахит, заболевания зубов и крови. Второе – проблемы щитовидной железы.
  • Железо в составе воды может находиться в растворенном, нерастворенном, коллоидном состоянии, а также в виде органических примесей и бактерий.
  • Марганец вместе с железом оставляют желтые потеки труб, аналогичные следы остаются и на чистом белье, а также вызывают характерный привкус. Это пагубно действует на печень.
  • Сероводород можно встретить в подземных водах, проводя анализ колодезной воды. Вещество относится к ядам, серьезно влияющим на здоровье людей. В воде, используемой для бытовых и питьевых нужд, присутствие сероводорода крайне опасно и запрещено.
  • Хлор – наиболее распространенное средство санитарной обработки водопроводной воды. Вещество оказывает пагубное воздействие на организм и является одной из причин генетических мутаций, тяжелых отравлений, онкологических болезней. Однако в воде часто наблюдается остаточный хлор, используемый для ее обеззараживания, в безопасной концентрации.
  • Натрий и калий – следствие растворения коренных пород.

Специальный химический анализ

Среди специальных анализов подземных вод важное место занимают:

  • Санитарный, направленный на определения уровня жесткости и кислотности, содержания солей и ионов NH4, NO2, NO3. Анализ выявляют в целях определения пригодности воды для питья и бытового использования и уровня ее загрязненности.
  • Бальнеологический анализ – кроме главных ионов, позволяет выявить уровень газовых компонентов, радиоактивность, число сульфатов, железо, мышьяк, литий и ряд иных показателей качества. Он считается наиболее полным и применяется для нормирования целебных источников минеральной воды, установленных требованиям ГОСТ Р 54316-2011, расположенных, например, в Карловых Варах, Ессентуках, Железноводске, Трускавце.
  • Технический анализ производят для того, чтобы оценить коррозионные и агрессивные свойства воды, а также определить ее пригодность для использования в нефтедобыче, для питания паровых котельных установок или в иной технической сфере.
  • Поисковый анализ питьевой воды используют наряду с техническим анализом для поиска агрессивных примесей и оценки способов ее дальнейшего использования.

Анализы воды из скважины проводят как в стационарных лабораторных условиях, так и с использованием полевых лабораторных установок непосредственно на объекте строительства. В полевых условиях часто используют исследовательские лаборатории и передвижные конструкции для анализа, разработанные учеными А. А. Резниковым (ПЛАВ), И. Ю. Соколовой и другими. Данный вид оборудования обычно состоит из упакованных смонтированных комплектов оборудования, посуды и реактивов, которые предназначены для исследований объемным, колориметрическим и нефелометрическим методами.

Химическая экспертиза воды имеет широкий спектр действия и применяется для:

  • анализа питьевой воды-
  • определения чистоты промышленных источников-
  • подбора фильтров на производстве.
  • Емкость для пробы воды на анализ должна быть стерильной. Объем тары – 500 гр. Простерилизовать посуду может лаборатория, проводящая исследование, но процедуру несложно провести и дома. Для этой цели пробирку необходимо простерилизовать кипятком или паром. Также можно подержать емкость 10-15 мин в духовке или над открытым огнем.
  • Перед забором нужно продезинфицировать кран открытым пламенем и обтереть спиртом. После этих манипуляций нужно спустить воду на полной мощности в течение 5-7 мин. Запрещается притрагиваться к крышке и горловине тары.
  • Жидкость необходимо оградить от тепла и прямых солнечных лучей, так как такое воздействие способно нарушить качество, и результаты будут недостоверными. Лучше во время перевозки поместить пробирку в холодное место.
  • Образец нужно передать в лабораторию и приступить к определениям максимум через 3 часа после забора.

К образцу прилагают документацию, содержащую информацию о виде источника (колодец, скважина, природный водоем и т. д.), место пробы, правильную дату и время забора, а также точный юридический адрес источника.

Изображение результатов химического анализа

Качество воды из скважины и ее состав можно определить несколькими методиками. Каждая из них устанавливает определенный показатель. Химический состав воды из скважины, водоема или колодца обычно изображают в ионной, процент-эквивалентной или эквивалентной форме. Ионная форма позволяет выразить химический состав питьевой воды в виде отдельных ионов, содержащихся в ней. Они выражаются в миллиграммах (мг) или же в граммах (гр), изредка данные могут быть предоставлены как отношение к массе и объему исследуемой жидкости.

Сегодня все сертифицированные лаборатории, куда доставляются пробы, предоставляют результаты гидрохимических исследований в ионной форме, которая является основным изображением состава воды. Ионная форма считается основной и используется для дальнейших переходов. Если надо выполнить перевод результатов, изображенных в виде отношения к единице объема, к составу, отнесенному к единице массы, количество отдельных ионов нужно поделить на плотность, а в случае обратного перехода - помножить.

Эквивалентная форма изображения результатов и получила значительное распространение. Она дает развернутое представление о свойствах воды, позволяет определить содержание ионов и установить происхождение вод. Форма используется в аналитических целях и позволяет контролировать результаты.

Эквивалент иона представляет собой частное от деления ионной массы на валентность иона. В качестве примера можно рассмотреть содержание иона натрия в эквивалентном виде иона: Na+ = 23/1, а эквивалент иона С = 35,5/1, из этого следует вывод, что на 23 единицы массы иона Na+ приходится 35,5 единицы иона, выраженных в эквивалентах. Исходя из этого, нужно отметить, что для перехода от ионной формы к эквивалентному изображению результатов нужно разделить количество иона, выраженное в миллиграммах (мг) или граммах (гр), на величину эквивалента иона.

Процент-эквивалентная форма позволяет более наглядно показать ионно-солевой состав, соотношение между ионами, а также определяет черты сходства вод с различной величиной минерализации, что делает данную форму наиболее распространенной. Но изображение содержания солей в составе исследуемых жидкостей только в одной из вышеперечисленных форм не дает возможности установить абсолютное содержание ионов в воде. По этой причине желательно предоставить результаты исследований, изобразив их в эквивалентной и ионной формах.

Многообразные химические соединения имеют разную степень токсичности и могут негативно влиять на работу органов человеческого организма, а в некоторых случаях становятся причиной летального исхода. Влияние на человеческий организм.

В связи с этим фактом принимают еще один показатель вредности воды – колониеобразующие единицы КОЕ. Показатель КОЕ в воде выявляет единичные микроорганизмы, способные образовывать колонии.

Все предельно допустимые концентрации (ПДК) веществ, содержащихся в составе воды, нормируются по ГОСТ 2874-82 и СанПиН 2.1.4.1074-01. При этом для расшифровки результатов возможно использовать нормативные документы, одобренные Всемирной организации здравоохранения (ВОЗ). Результат анализа в обязательном порядке должен содержать информацию о классе опасности каждого из компонентов.

Микробиологический анализ

Широко используют метод микробиологического анализа. Он позволяет установить качество воды из скважины и водопроводной жидкости благодаря способу мембранной фильтрации. Вода пропускается через специальную мембрану с размером сетки 0,65 мкм. Все микроорганизмы остаются на фильтре.

Для каких источников может быть назначен данный вид исследования:

  • Централизованный водопровод. Исследование проводят, если имеется информация о вероятном заражении воды.
  • Автономные источники, такие как скважины или колодцы. Анализ необходим в обязательном порядке и требует регулярного проведения для своевременной очистки и дезинфекции.
  • Жидкости, расфасованные в тару (бутилированная вода), проверяют микробиологическим исследованием для поддержания и повышения качества.
  • Стоки рекомендуется исследовать для оценки воздействия человеческой деятельности на внешнюю среду.

Микробиологическое загрязнение обычно происходит из-за воздействия промышленности, фермерских хозяйств и канализационных стоков. Анализ дает возможность своевременно провести мероприятия по очистке и предотвратить негативное воздействие на человека.

Частота проведения исследований

При обустройстве новой скважины микробиологический анализ необходимо выполнить дважды. Первый забор производят сразу после бурения скважины – для определения типа очистного оборудования. После подбора и установки фильтра, а также настройки систем водоподготовки проверка воды на качество нужна для того, чтобы дать оценку эффективности используемого оборудования и определить качество очищенной воды.

В дальнейшем в течение первого года работы рекомендуется проводить исследования не реже чем один раз в квартал (3 месяца). В дальнейшем как минимум раз в 12 месяцев. Своевременный контроль качества позволяет снизить риск заболеваемости и смертности, так как состав воды постоянно меняется, просочившиеся загрязненные грунтовые воды могут содержать бактерии и иные вредные примеси. Воду из колодца необходимо проверять бактериологическим методом как минимум 1 раз в 10-12 месяцев.

Отбор проб воды для микробиологического анализа

Забор пробы на микробиологические исследования имеет ряд отличий от забора для проведения химического исследования. Для получения наиболее точного результата рекомендуется придерживаться следующих требований:

  • Использовать для забора только стерильную емкость, такую же как для химического анализа. Обычно объем тары не превышает 0,5 литра. Оптимальным вариантом будет использование емкости, приобретенной в лаборатории, в которой будет проводиться исследование.
  • При использовании собственной тары необходимо заранее ее подготовить. Для этого емкость стерилизуют при помощи пара, кипятка или духового шкафа.
  • Перед тем как сдать воду на анализ водопроводный кран необходимо обеззаразить спиртом и огнем, так как состав водопроводной воды подвержен изменениям под действием внешних бактерий. Затем нужно спустить воду в течение 5-6 минут, чтобы избавиться от застоявшейся в трубах воды.
  • После забора емкость плотно закрывают.
  • Запрещено прикасаться к горловине и внутренней стороне крышки емкости.

Необходимо как можно быстрее доставить образец в лабораторию, если нет возможности сделать анализ воды в течение двух часов, пробу помещают в холодильник, где она может сохранить свои свойства на протяжении одного дня. Так же как и образец для химического анализа, пробу для микробиологического исследования в обязательном порядке сопровождает соответствующая документация. Образец для исследования доставляют в лабораторию ближайшего отделения СЭС, где можно сделать развернутый анализ. Для наиболее быстрого получения результатов желательно заранее договориться с выбранной лабораторией.

Критерии, отвечающие за качество воды

Особое место в исследовании должно занимать качество воды, критерии качества воды должны соответствовать нормативным рамкам, установленным действующим ГОСТом. Согласно формулировке ГОСТ 27065-86, под критериями качества воды понимают один или группу характерных признаков, позволяющих дать оценку ее качества. Исходя из предполагаемого назначения скважины, водоема или колодца выделяют несколько критериев, согласно которым производят оценку качества воды, основными из них являются:

  • Гигиенический критерий, согласно которому учитывают общую безопасность, в том числе с точки зрения токсикологии, эпидемиологии и радиологии. Также критерий позволяет оценить благоприятные свойства и влияние на организм человека.
  • Экологический критерий позволяет оценить воздействие колодца или скважины на окружающую среду и рассчитать ориентировочный срок службы водного объекта.
  • Экономический критерий оценивает финансовую прибыльность источника.
  • Рыбохозяйственный – дает возможность оценить качество воды различных предприятий рыбного промысла или при выборе воды для аквариумов и рыбных вольеров, что позволяет оценить возможность развития рыб и других водных животных.

Допустимое содержание солей и примесей

Гигиенические требования к питьевой воде централизованного водоснабжения устанавливаются СанПиН 2.1.4.559-96. Согласно нормативному документу, вода должна иметь безвредный химический состав и отвечать всем критериям радиационной и эпидемической безопасности.

Все данные нормативов были приняты по требованиям ВОЗ.

О чём расскажут результаты анализа воды? Как читать химический анализ питьевой воды? Как понимать термины и сокращения в анализах воды. Разновидности химического анализа воды и его назначение. Расшифровка и предельно-допустимые значения исследуемых показателей согласно действующим нормативным документам. Для непосвящённого человека результаты анализа воды напоминают шифровку. Чтобы понять, как читать химический анализ питьевой воды, необходимо разобраться в значении и особенностях всех составляющих.

Термины в анализах воды

Обычно в результате анализов указывается не только количество найденных веществ, но и их предельно допустимая концентрация. Сокращённое название этого показателя ПДК. В данном случае имеют ввиду самый большой объём компонента, при котором он не будет оказывать негативное влияние на человеческий организм при условии, что поступление данного элемента будет продолжаться на протяжении всей жизни человека. Также данные компоненты в предельно-допустимой концентрации не будут ухудшать условия водопотребления.

Обычно все предельно-допустимые концентрации тех или иных веществ оговариваются действующими нормативными документами, а именно ГОСТ 2874-82 и СанПиН 2.1.4.1074-01. Кроме этого при расшифровке результатов анализов можно руководствоваться рекомендациями Всемирной Организации Здравоохранения. Также в результатах обычно оговаривается класс опасности искомого компонента. Так, выделяют следующие классы опасности:

1 К – чрезвычайно опасные элементы:

2 К – высоко опасные составляющие-

3 К – опасные компоненты-

4 К – вещества умеренной опасности.

Различные химические соединения способны оказывать разную степень токсичности. Все эти вещества, попадая в водную среду, могут оказывать разное токсическое действие на наш организм. В связи с этим есть ещё один показатель вредности составляющих водной среды. По этому признаку все элементы могут подразделяться на такие группы:

  • Группа санитарно-токсикологических признаков, обозначаемая «с-т».
  • Группа органолептических признаков. В данной группе даётся расшифровка воздействия компонента на те или иные органолептические показатели (сокращение «зап» говорит о способности вещества изменят запах водной среды, «окр» указывает на возможное изменение окраски, «пен» говорит о способности вещества вызывать пенообразование, сокращение «привк» указывает на изменения во вкусовых качествах при присутствии данного элемента, «оп» — это способность вещества вызывать опалесценцию).

Результаты анализа воды могут содержать единицу измерения КОЕ. Расшифровывается данная аббревиатура как колониеобразующие единицы. Данный показатель указывает на единичные бактерии и дрожжевые грибки, которые в состоянии создавать целые колонии в благоприятной среде через определённый промежуток времени.

Разновидности анализов воды

Любой анализ воды может проводиться для получения достоверного результата о чистоте и качестве воды, а также для выбора подходящих мероприятий по её очистке. Так может выполняться несколько видов анализов:

  • Расширенный химический анализ по 25 показателям.
  • Сокращённый химический анализ по 12 компонентам.

Результаты расширенного химического анализа воды могут понадобиться в следующем случае:

  • если требуется провести анализ химических составляющих воды-
  • в ситуации, когда необходимо правильно подобрать оборудование для фильтрации-
  • для проверки состояния воды после проведённой фильтрации-
  • такой анализ позволит сделать выводы об эффективности фильтрующих установок-
  • если требуется проверить воду на присутствие в ней вредных микроорганизмов.

Сокращённый анализ может заказать потребитель для проверки качества питьевой воды, также данный анализ позволяет оценить качество работы фильтров. Для точности проведения анализа отбор проб воды должен выполняться с соблюдением следующих условий:

  1. Воду нужно набирать либо в специально подготовленные пробирки, либо в чистые пластиковые бутылки от питьевой столовой воды.
  2. Перед тем как делается забор жидкости, ёмкость ополаскивается набираемой водой и из неё удаляются остатки воздуха.
  3. При транспортировке образец с водой лучше скрыть от попадания солнечных лучей на него. Также не рекомендуется транспортировать воду в тёплом месте. Иначе результаты анализов будут недостоверными.
  4. Тара с водой для анализа должна быть доставлена в лабораторию не более чем за 2-3 часа.

Как читать результаты анализов?

Обычно результаты анализов питьевой воды указываются по каждому показателю в цифрах и единицах измерения. Зная нормы по каждому показателю, вы сами можете сделать выводы о пригодности воды для питья. Если все показатели не превышают норму, то воду можно считать чистой и качественной. При превышении каких-то значений требуется провести дополнительную фильтрацию.

Показатели чистоты воды, нормируемые регламентирующими документами РФ

Характеристика или показатель чистоты воды Единица измерения Допустимый предел
Вкусовые качества балл не больше 2
Запах t=60°С балл не больше 2
Запах t=20°С балл не больше 2
цвет градус не более 20
Мутность или прозрачность мг/дм³ не более 1,5
Присутствие осадка см. описание не нормируется
Кислотность рН 6,5-8,5
Остатки частиц хлора мг/дм³
Окисляемость мгО₂/дм³ не больше 5
Присутствие частиц аммиака мг/дм³ не больше 0,5
Наличие элементов нитрата мг/дм³ не более 0,5
Наличие элементов нитрита мг/дм³ не больше 50
Жёсткость мг-экв/дм³ не более 7
Степень минерализации мг/дм³ 1000
Элементы хлоридов мг/дм³ не более 250
Сульфаты мг/дм³ не более 250
Частицы железа мг/дм³ не больше 0,2
Элементы цинка мг/дм³ не более 1,0
Элементы марганца мг/дм³ не больше 1,0
Частицы меди мг/дм³ не нормируется
Щёлочность мг/дм³ не нормируется
Элементы магния мг/дм³ не нормируется
Элементы кальция мг/дм³ не нормируется
Соли калия и натрия мг/дм³ не нормируется

У нас вы можете заказать полный либо сокращённый химический анализ воды. Для этого вам нужно связаться с нами по указанным телефонам.

Анализ питьевой воды в Москве является важным вопросом для многих. Если раньше мы пили воду, текущую из кранов в наших домах и не задумывались о ее качестве, то сегодня жители столицы все чаще озадачиваются проблемой анализа питьевой воды в Москве. Где сделать? Будет ли эта экспертиза достоверной, и сколько придется заплатить?

Зачем делать анализ питьевой воды в Москве

Вода, поставляемая в дома москвичей централизовано, должна соответствовать ГОСТам. Но не все доверяют официальной информации коммунальщиков, поэтому стремятся проверить воду самостоятельно, и уж потом пьют со спокойной душой.

Но если в случае с централизованными водопроводами можно надеяться хоть на какой-то контроль со стороны государства, то владельцам приусадебных и загородных участков, получающим влагу жизни из скважин, полагаться толком не на кого. И прежде чем взять в руки стакан, нужно обязательно провести химический анализ питьевой воды, результаты которого покажут, необходимо ли содержимое скважин доочищать, насколько серьезными должны быть фильтры и вообще, можно ли эту воду употреблять в пищу.

Где проводить анализ питьевой воды в Москве

Часто к коттеджным поселкам «прикреплены» фирмы, предлагающие услуги проверки воды. Но можно ли доверять предпринимателям, кровно заинтересованным в том, чтобы люди покупали недвижимость на их участках? Ответ на этот вопрос каждый даст себе сам, и если он будет отрицательным, то приведенный ниже список независимых центров анализа воды придется очень кстати.

Итак, где сделать анализ питьевой воды в Москве

· Столичная Санэпидемстанция, расположенная по улице Полярной, 7 (корпус №2).

· Лаборатория спектральных исследований “СПЕКТРУМ” по Николоямской, 29 (строение 2).

· ООО «КАЧЕСТВО ЖИЗНИ», которое находится на проспекте Вернадского, 29.

· Главный испытательный центр питьевой воды в Научном проезде, 20 (строение 3).

· ООО ИСВОДЦентр по ул. Донской, 32.

· «ЭКОТЕСТЭКСПРЕСС» Москва, что на Горбунова, 2 (цех и лаборатория номер один).

· Лаборатория №1 ЦГиЭ в Карманицком переулке, 9.

· Центр анализа воды Битекс по Кулакова, 20.

· НПЦ «ЗВЕЗДА» во втором Лихачевском переулке, 1-а.

· Лаб24 на Волоколамском шоссе, 89.

· Главный испытательный центр питьевой воды на проспекте Вернадского 86.

· ЗАО РОСА по Родниковой, 7 (строение 35).

· EcoStandard 107113 на 3-ей Рыбинской, 17 (строение 1, офис 401).

· Государственная лаборатория при Московском государственном университете – проезд 2-й Рощинский, 8.

Некоторые центры, заботясь о комфорте клиентов, имеют по нескольку пунктов приема воды в разных районах столицы. Другие же пошли еще дальше, организовав курьерскую доставку материала для анализа прямо из дома клиента.

Анализ питьевой воды в Москве, цена исследования:

Большинству желающих провести анализ питьевой воды в Москве цена этой процедуры не покажется слишком устрашающей. Стоимость комплексного исследования для рядовых потребителей составит в среднем 4,5 тысячи рублей. Предпринимателям же выставят счет, который во многом будет зависеть от рода деятельности а также от того, сколько компонентов определяется во время анализа. Один компонент обходится обычно примерно в 150 рублей, а их бывает более полусотни.

Цены в лабораториях варьируются еще и в зависимости от сложности исследования. Оно может быть сокращенным, а может проводиться по расширенному перечню.

В любом случае более подробную информацию по стоимости, скорости и видам указания услуг и т.д. лучше узнавать, обратившись в конкретные центры. И не нужно сомневаться по поводу необходимости химического анализа воды. Лучше потратить немного времени и денег, чем пить неизвестно что.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на ]]>http://www.allbest.ru/]]>

1. ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ ТЕМЫ

санитарный бактериологический вода обеззараживание

Вода обязательная составная часть всего живого, является физиологически и гигиенически необходимым элементом. Вместе с тем она может стать источником болезней и нарушения здоровья, вследствие изменения ее состава, качества или употребляемого количества.

При потере воды в количестве менее двух процентов веса (1 - 1,5 л.) наступает жажда 6-8%-полуобморочное состояние, 10% - галлюцинации, нарушение глотания, 20% - смерть. С водой связано распространение инфекционных и гельминтных заболеваний, a от макро- и микроэлементного состава питьевой воды, загрязнения ее вредными химическими веществами, зависит заболеваемость неинфекционной природы. Имеется достаточно сведений о значении водного фактора и распространении холеры, брюшного тифа, дизентерии, паратифа А и Б, 6олезни Боткина, Вейля - Васильева (иктерогеморрагический лептоспироз), водной лихорадки, туляремии и многих других

2. ЦЕЛЬ ЛЕКЦИИ

1. Усвоить знания о физиологическом, гигиеническом и эпидемиологическом значении воды. Ознакомить студентов с влиянием химического состава воды на здоровье населения.

2. Рассмотреть требования к качеству питьевой воды при централизованном водоснабжении и качеству воды источников водоснабжения.

3. Усвоить общие сведения о методике обследования водоисточников, правилах выбора источника водоснабжения и отбора проб воды для санитарно-химического и санитарно-бактериологического анализов.

4. Усвоить методику оценки качества питьевой воды по микробиологическим, токсикологическим и органолептическим показателям.

5. Ознакомиться с основными методами улучшения качества питьевой воды

3. ВОПРОСЫ ТЕОРИИ

Гигиеническое, физиологическое и эпидемиологическое значение воды.

Гигиеническая оценка питьевой воды и источников водоснабжения. Показатели загрязнения воды.

Зоны санитарной охраны источников водоснабжения и водопроводов хозяйственно-питьевого назначения.

Исследование физического, химического и бактериологического состава воды.

Эндемические заболевания, связанные с изменением количества микроэлементов в воде.

Основные методы улучшения качества питьевой воды: осветление, обесцвечивание и обеззараживание.

4. ПРАКТИЧЕСКИЕ НАВЫКИ

1. Освоить методики определения физических свойств воды.

2. Освоить некоторые качественные реакции определения химического состава воды.

3. Научиться определять содержание активного хлора в 1% растворе хлорной извести, остаточный хлор и потребную дозу хлора.

5. УЧЕБНЫЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Влияние химического состава воды на здоровье человека.Природные воды значительно отличаются между собой по химическому составу и степени минерализации. Солевой состав природных вод представлен преимущественно катионами Са, Mg, Al, Fe, К и анионами НСО, Сl, NO 2 , SO 4 . Степень минерализации вод в России увеличивается с севера на юг. Вода с содержанием минеральных солей более 1000мг/л может иметь неприятный вкус (соленый, горько-соленый, вяжущий), ухудшает секрецию и повышает моторную функцию желудка и кишечника, отрицательно сказывается на усвоении пищевых веществ и вызывает диспептические явления. Длительное употребление жесткой воды (общая жесткость более 7мг - экв) предрасполагает к образованию камней в почках.

Забор воды в г. Сургуте осуществляется из подземных горизонтов. Ее жесткость находится в пределах 1мг.экв.л. Имеются сведения о неблагоприятном воздействии мягкой воды на сердечно-сосудистую систему. Результаты, полученные в Московском НИИ гигиены имени Ф.Ф.Эрисмана, доказали отрицательное влияние потребления мягких вод на эту систему человека.

Повышенное состояние хлоридов в воде может способствовать возникновению гипертонических состояний, сульфатов - расстройству деятельности кишечника, нитратов - водно-нитратной метгемоглобинемии. Это заболевание характеризуется диспептическими явлениями, резкой одышкой, тахикардии. У детей грудного возраста, употребляющих питательные смеси, для приготовления и разбавления которых применялась вода с содержанием нитратов более 40мг/л., наблюдается цианоз. В крови обнаруживается значительный процент метгемоглобина, что ведет к кислородному голоданию тканей. У детей старшего возраста и взрослых восстановление нитратов и образование метгемоглобина происходит в небольших количествах. Это не оказывает существенного влияния на состояние их здоровья, но у лиц, страдающих анемией или сердечно-сосудистыми заболеваниями, может усилить явления гипоксии.

На здоровье человека сказывается изменение содержания в воде микроэлементов: фтора, йода, стронция, селена, кобальта, марганца, молибдена и др.

Микроэлементы - химические элементы, содержащиеся в растительных и животных организмах в малых количествах (тысячные и меньшие доли процента). Микроэлементы, которые содержатся в организме в количестве стотысячных долей процента и меньше, например, золото, ртуть, В.И. Вернадский назвал ультраэлементами.

Увеличение содержания фтора ведет к возникновению флюороза, снижение - кариеса зубов. Недостаток йода сопровождается поражением щитовидной железы. При дефиците кобальта наблюдается развитие тяжелых анемий, предрасположение к пневмонии у детей- при дефиците меди - могут развиться элементарная гипохромная анемия у детей, беременных женщин, послеоперационные анемии. С недостатком цинка связывают карликовый рост, а с недостатком селена (его низкой концентрацией в сетчатке глаза) - понижение остроты зрения. Особенно велико значение микроэлементов для организма ребенка на всех этапах его роста и развития.

Почти 2/3 территории России характеризуется недостатком йода, 40% - селена. Спуск неочищенных промышленных сточных вод может привести к появлению токсических концентраций мышьяка, свинца, хрома и других вредных примесей в воде открытых водоемов.

Наиболее тесная связь с уровнем химической нагрузки установлена для болезней органов пищеварения, мочеполовой системы, крови и кроветворных органов, болезней кожи и подкожной клетчатки. Высокая зависимость от уровня органического загрязнения воды (ХПК - химическое потребление 0 2) и суммы хлорорганических соединений (ХОС) установлена для гастритов, дуоденитов, неинфекционных энтеритов и колитов, болезней печени, желчного пузыря и поджелудочной железы, патологии почек и мочевыводящих путей.

Большое гигиеническое значение имеет радиоактивность природных вод. В горных породах содержатся уран, торий, радий, полоний и др., а также радиоактивные газы - радон, торон. Обогащение природных вод радиоактивными элементами обусловлено выщелачиванием, растворением и эманированием (радон, торой) минеральных веществ. Загрязнение вод происходит и за счет поступления в них радиоактивных сточных вод. Использование вод с повышенным содержанием радиоактивных элементов может привести к неблагоприятным генетическим последствиям: аномалиям развития, злокачественным новообразованиям, заболеваниям крови и т.д.

Большая часть населения земного шара употребляет питьевую волу (с активностью порядка 10 -13 кюри/л (от 0,4 до 1*10 13 кюри/л).

Выбор и оценка качества источников централизованного водоснабжения

При выборе источника водоснабжения в первую очередь должны быть использованы межпластовые напорные подземные воды. Далее следует переходить к другим источникам в порядке снижения их санитарной надежности: межпластовым безнапорным водам - трещинно-карстовым водам при условии их особо тщательной гидрологической разведки и характеристики - грунтовым водам, в том числе инфильтрационным, подрусловым и искусственно пополняемым - поверхностным водам (рекам, водохранилищам, озерам, каналам).

Санитарное обследование водоисточника включает:

санитарно - топографическое обследование-

определение качества воды в водоисточнике и его дебита-

выявление заболеваемости среди населения и некоторых видов животных в районе расположения водоисточника-

взятие проб воды для исследования.

Необходимо рассмотреть данные о возможности организации зон санитарной охраны (ЗСО) источника водоснабжения- примерные границы ЗСО по отдельным ее поясам- при существующем источнике - данные о состоянии ЗСО. Изучаются данные о необходимости обработки воды источника (обеззараживание, осветление, обезжелезивание и др.). Рассматривается санитарная характеристика существующей или предполагаемой конструкции водозабора (водоприемник, скважина, колодец, каптаж)- степень защищенности источника от проникновения загрязнений извне, соответствие принятых мест, глубины, типа и конструкции водозабора его назначению и степени обеспечения получения воды возможно лучшего в данных условиях качества.

Требования к питьевой воде, подаваемой централизованными системами хозяйственно питьевого водоснабжения представлены в ГОСТе 2074-82. Вода питьевая.

В практике водоснабжения вследствие недостаточного дебита подземных вод часто используют поверхностные воды, которые систематически загрязняются за счет спуска хозяйственно-фекальных и промышленных сточных вод, судоходства, лесосплава и т.д.

Вода этих источников подлежит обязательной обработке, но в связи с тем, что возможности обработки воды ограничены, в официальных нормативных документах содержатся гигиенические требования, которые предъявляются к источникам водоснабжения.

Таблица 1. Состав и свойства воды поверхностных источников хозяйственно питьевого водоснабжения (гост 17.1.03-77)

показатель требования и норматив  
Плавающие примеси (вещества) На поверхности водоема не должны обнаруживаться плавающие пленки, пятна минеральных масел и скопления других примесей  
Запахи, привкусы До 2 баллов  
  Не должна обнаруживаться в столбике 20см.  
Водородный показатель Не должен выходить за пределы 6,5 - 8,5 pH  
Минеральный состав:    
сухой остаток 1000 мг/дм 3  
     
сульфаты    
биохимическая потребность в кислороде (ВПК) Полная потребность воды при 20 0 С не должна превышать 3 мг/дм 3  
Общая жесткость 7 мг-экв/л  
Бактериальный состав Вода не должна содержать возбудителей кишечных заболеваний. Число бактерий группы кишечных палочек (коли-индекс) не более 10000 в 1000 мл воды  
Токсические химические вещества Не должны превышать ПДК  
Железо (в подземных источниках)    
 

Сведения о факторах, определяющих зоны санитарной охраны водоисточников, правилах определения границ поясов ЗСО подземных и поверхностных источников, границ ЗСО водопроводных сооружений и водоводов, основные мероприятия на территории ЗСО, программа изучения источников водоснабжения для установки границ ЗСО изложены в Санитарных правилах и нормах (СанПиН 2.1.4...-95). Зоны санитарной охраны источников водоснабжения и водопроводов хозяйственно-питьевого назначения.

Отбор проб воды для лабораторного анализа

Каждая проба воды должна иметь номер и направляться в лабораторию с сопроводительным документом, в котором указывают: название водоисточника, когда, в какой точке и кем взята проба, температура воды, состояние погоды, особенности взятия пробы (с какой глубины, продолжительность откачки воды и т.д.).

Из открытого водоема пробы воды отбирают у верхней и нижней границы района водопотребления (по течению водоема) на глубине 0,5 - 1м, посередине водоёма и на расстоянии 10м от берегов. Пробы воды следует брать прежде всего в том месте, где осуществляется или намечается забор воды населением.

Отборы воды из шахтных колодцев осуществляют на глубине 0,5 - 1м. Из колодцев с насосами и водопроводных кранов воду предварительно спускают в течение 5 - 10 минут.

Для полного химического анализа отбирают 5л. воды, для краткого - 2л., в химически чистую посуду с помощью батометров различных конструкций. Емкости 2-3 раза ополаскивают исследуемой водой. Взятые пробы воды подлежат исследованию в ближайшие 2-4 часа.

При большом сроке пробу консервируют добавлением 2мл 25% серной кислоты на 1л воды (при определении окисляемости и аммиака) или 2мл хлороформа (при определении взвешенных веществ, сухого остатка, хлоридов, солей азотистой и азотной кислоты).

Для бактериологического анализа пробы воды отбирают в стерильную посуду в количестве 500мл (для определения патогенных микробов 1-3л) с глубины 15-20см от поверхности водоема или глубже в тех же местах, что и для химического анализа. Емкость открывают непосредственно перед, отбором пробы, при этом бумажный колпачок с емкости снимают вместе с пробкой, не касаясь пробки руками. Край водопроводного крана после спуска застоявшейся воды обжигают. Пробы исследуют не позднее чем через 2 часа, допускается продление срока до 6 часов, при условии хранения воды во льду.

Исследование физических свойств воды

Температура воды определяются ртутным термометром непосредственно в водоеме или сразу после выемки пробы.

Термометр погружают в воду на 5-10мин. Оптимальная температура для питья 7-12 0 С.

Запах определяется при комнатной температуре и при нагревании до 60°С.

Определение запаха при нагревании производят в широкогорлой колбе емкостью 250мл, в которую наливают 100мл исследуемой воды.

Колбу прикрывают часовым стеклом, помещают на электрическую плитку и нагревают до 60°С.

Затем вращательными движениями взбалтывают, сдвигают стекло в сторону и быстро определяют запах.

Запах воды характеризуется как ароматический, гнилостный, древесной и т.д., кроме того, применяют термины сходства запахов: хлорный, нефтяной и др.

Интенсивность запаха определяют в баллах от 0 до 5 баллов. 0- запах не ощущается- 1- запах, не поддающийся определению потребителям, но обнаруживаемый в лаборатории привычным наблюдателем- 2- запах поддающийся обнаружению потребителем, если обратить на него внимание- 3- запах, который легко замечается- 4- запах, который сам обращает на себя внимание- 5- запах настолько сильный, что вода для питья непригодна.

Вкус определяется только обеззараженной или заведомо в чистой воде при температуре 20°С. В сомнительных случаях воду предварительно подвергают кипячению в течении 5 минут с последующем охлаждением. Воду набирают в рот маленькими порциями, держат несколько секунд и определяют вкус, не проглатывая ее. Сила вкуса выражается в баллах: отсутствие привкуса - 0, очень слабый привкус - 1 балл, слабый - 2, заметный -3, отчетливый - 4 и очень сильный 5 баллов. Дополнительная характеристика вкуса: соленый, горький, кислый, сладкий- привкусы - рыбный, металлический и др.

Прозрачность воды определяют в бесцветном цилиндре, разделенном по высоте на см., с плоским прозрачным дном и тубусом у основания для выпуска воды, на который надета резиновая трубка с зажимом. Под дно цилиндра подкладывается печатный шрифт Снеллена так, чтобы шрифт находился на 4см от дна. Воду сливают из боковой трубки и отчитывают высоту столба воды, при котором можно отчетливо различать шрифт. Прозрачность выражается в см с точностью до 0,5см. В норме прозрачность составляет 30см и более.

Цветность воды определяется путем сравнения с дистиллированной водой налитой в бесцветные цилиндры. Сравнение цвета производится на белом фоне. Цвет воды характеризуется следующими терминами бесцветная, светло-желтая, бурая, зеленая, светло-зеленая и т.д. Интенсивность окраски воды определяется количественно путем сравнения испытуемой воды со шкалой стандартных растворов в условных градусах. Питьевая вода должна иметь цветность от 20 до 35 градусов.

Осадок определяется после одночасового отстаивания. Количество нерастворимых взвешенных веществ, обусловливающих мутность воды, может быть определенно весовым способом путем фильтрации с помощью тигля Гуча, на который помешают асбестовый фильтр.

Примечания:

Для водопроводов, подающих воду без специальной обработки по согласованию с органами сан.эпид.службы допускается: сухой остаток до 1500мг.л.- общая жесткость до 10 мг-экв.л- железо до 1мг.л- марганец до 0,5. мг.л.

Сумма концентраций хлоридов и сульфатов, выраженных в долях ПДК каждого из этих веществ в отдельности, не должна быть более 1

Органолептические свойства воды

Запах при 20°С и при нагревании до 60°С, баллы, не более 2

Вкус и привкус при 20°С, баллы, не более 2

Цветность, градусы, не более 20

Мутность по тандартной шкале, мг.л, не более 1,5

Примечание: по согласованию с органами сан.эпид.надзора допускается увеличение цветности воды до 35°, мутности (в паводковый период) до 2мг.л.

Контроль за качеством:

На водопроводах с подземным источником водоснабжения анализ воды в *течение первого года эксплуатации проводят не реже 4 paз. (по сезонам года). В дальнейшем не реже одного раза в год в наиболее неблагоприятный период по результатам первого года.

На водопроводах с поверхностным источником водоснабжения анализ воды проводят не реже одного раза в месяц.

При контроле обеззараживания воды хлором и озоном на водопроводах с подземными и поверхностными источниками водоснабжения концентрацию остаточного хлора и остаточного озона определяют не реже одного раза в час.

Концентрация остаточного озона после камеры смешения должна быть 0,1 - 0,3 мг.л., при обеспечении время контакта не менее 12 минут.

Отбор проб в распределительной сети проводят из уличных водоразборных устройств, характеризующих качество воды в основных магистральных водопроводных линиях, из наиболее возвышенных и тупиковых участков уличной распределительной сети. Отбор проб проводят также из кранов внутренних водопроводных сетей всех домов, имеющих подкачку и местные водонапорные баки.

Вода питьевая. Гигиенические требования и контроль да качеством.ГОСТ2874 - 82

Гигиенические требования

Питьевая вода должна быть безопасна в эпидемическом отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства.

По микробиологическим показателям питьевая вода должна соответствовать следующим требованиям:

Число микроорганизмов -- в 1мл 3 воды, не более - 100

Число бактерий группы кишечных палочек в 1 л (коли-индекс) не более 3.

Токсикологические показатели воды

Токсикологические показатели качества воды характеризуют безвредность ее химического состава и включают нормативы для веществ:

встречающихся в природных водах-

добавляемых к воде в процессе обработки в виде реагентов-

появляющихся в результате промышленного, бытового и иного загрязнения источников водоснабжения.

Концентрация химических веществ, встречающихся в природных водах или добавляемых к воде в процессе ее обработки, не должна превышать нормативов, указанных ниже:

Таблица 2. Концентрация химических веществ

Наименование показателя в мг.л., не более Норматив  
Алюминий остаточный    
Бериллий    
Молибден    
     
     
Полиакриламид остаточный    
     
     
Стронций    
Фтор для климатических районов:    
     
     
     
 

Таблица 3. Органолептические показатели воды

Определение химического состава воды(качественные реакции)

Активная реакция (pH). Воду наливают в две пробирки: в одну из них погружают красную лакмусовую бумагу, в другую синюю. Через пять минут эти бумажки сравнивают с такими же- ранее опущенными в дистиллированную воду. Посинение красной бумажки указывает на щелочную реакцию, покраснение синей - на кислую. Если цвет бумажки не изменился, значит реакция нейтральная.

Определение азотсодержащих веществ. Азотсодержащие вещества являются важным показателем загрязнения воды, т.к. они образуются при разложении белковых веществ, попадающих в водоисточник с хозяйственными - фекальными и промышленными отходами. Аммиак - продукт белкового распада, поэтому его обнаружение свидетельствует о свежем загрязнении. Нитриты указывают на некоторую давность загрязнения. Нитраты свидетельствуют о более давних сроках загрязнения. По азотсодержащим веществам можно судить и о характере загрязнения. Обнаружения триады (аммиак, нитриты и нитраты) свидетельствует о явном неблагополучии источника, подвергающегося постоянному загрязнению.

Качественное определение аммиака проводят следующим образом: в пробирку наливают 10мл исследуемой воды, прибавляют 0,2мл (1-2 капли) сегнетовой соли и 0,2мл реактива Несслера. Через 10 минут определяют содержание аммонийного азота, используя таблицу.

Определение нитратов. В пробирку наливают 1мл исследуемой воды, прибавляют 1 кристалл дефиниламина и осторожно наливают, наслаивая концентрированную серную кислоту. Появление синего кольца говорит о наличии в воде нитратов.

Определение нитритов. В пробирку наливают 10мл исследуемой воды, 0,5мл реактива Грисса (10 капель) и нагревают на водяной бане в течении 10 минут при температуре 70-80°С. Приблизительное содержание нитритов определяют по таблице.

Определение хлоридов. Хлориды в воде источника водоснабжения могут быть косвенным показателем загрязнения воды органическими веществами животного происхождения. При этом имеет значение не столько концентрация хлоридов, сколько ее изменение на протяжении времени. Большие концентрации хлоридов могут наблюдаться в солончаковой почве. Содержание хлоридов не должно превышать 350мг/л.

Качественная реакция: 5мл исследуемой воды наливают в пробирку, подкисляют 2-3 каплями азотной кислоты, прибавляют 3 капли 10% раствора нитрата серебра (азотно-кислое серебро) и определяют степень помутнения воды. Приближенное содержание хлоридов определяют по таблице.

Определение сульфатов. Содержание в питьевой воде повышенного количества сульфатов может оказать послабляющее действие и изменить вкус воды. Качественная реакция: 5мл исследуемой воды наливают в пробирку, прибавляют 1-2 капли соляной кислоты, 3-5 капель 5% раствора хлорида бария. Приближенное содержание сульфатов определяют по мутности и осадку по таблице.

Определение железа. Избыточное содержание железа придает воде желто-бурую окраску, мутность, горьковатый металлический привкус. При использовании такой воды в бытовых целях образуются ржавые пятна на белье, сантехнике.

Для качественного определения железа в пробирку наливают 10мл исследуемой воды, вносят 2 капли концентрированной соляной кислоты и добавляют 4 капли 50% раствора роданида аммония. Приближенное суммарное содержание железа определяется по таблице.

Определение жесткости воды. Жесткость воды зависит от присутствия в ней растворенных солей щелочноземельных магния и кальция. В некоторых случаях жесткость воды обуславливается присутствием закисного железа, марганца, алюминия. Различают 4 вида жесткости: общую, карбонатную, устранимую, и постоянную. Жесткость воды выражается в мг-эквивалентах растворимых солей кальция и магния в одном литре воды.

Определение карбонатной жесткости. В колбу емкостью 150мл наливают 100мл исследуемой воды, прибавляют 2 капли метилоранжа и титруют 0,1 нормальным раствором соляной кислоты до розового окрашивания. Расчет проводится по формуле:

X=(а*0,1*1000)/(v), где Х - жесткость- а - количество 0,1н р-ра HCl в мл, ушедшее, на титрование- 0,1 - титр кислоты- v - объем исследуемой воды.

Определение общей жесткости. В колбу емкостью 200-250мл исследуемой воды, добавляют аммиачно-буферного раствора 5мл и 5-7 капель индикатора хромогена черного. Титруют медленно при интенсивном помешивании 0,1н р-ром трилона Б до перехода винно-красного окрашивания, в сине-зеленое. Жесткость рассчитывают в мг/экв по формуле:

Х=(а*к*0,1*1000)/(v), где Х - общая жесткость, а - расход трилона Б в мл, к - поправочный коэффициент трилона Б (0,695), v - объем пробы воды.

Очисткаиобеззараживание питьевой воды

Подземные глубокие артезианские воды, а также воды родников и ключей, вытекающих часто с большой глубины, санитарном отношении являются наиболее благополучными. Они обладают лучшими физико-химическими свойствами и почти свободны от бактерий. Воды обладают более низкими физико-химическими свойствами и обычно имеют большое бактериальное загрязнение. Поэтому воды открытых водоемов, используемые при центральном водоснабжении, требуют предварительной очистки и обеззараживания.

Очистка улучшает физические свойства воды. Вода становится прозрачной, освобождается от окраски и запахов. При этом из воды удаляется большая часть бактерий, которые при отстаивании воды оседают.

Для очистки воды применяется несколько методов:

а)отстаивание-

б)коагуляция-

в)фильтрация.

6. ОТСТАИВАНИЕ

Для отстаивания воды устраиваются специальные резервуары-отстойники. Вода в этих отстойниках движется очень медленно и находится в них 6-8 часов, а иногда и больше. За это время из воды успевает осесть большая часть взвешенных в ней веществ, в среднем до 60%. При этом в воде остаются главным образом самые мелкие взвешенные частицы.

7. КОАГУЛЯЦИЯ ВОДЫ и ФИЛЬТРАЦИЯ

Для того, чтобы при отстаивании удалять мелкие взвешенные частицы, к воде еще до поступления ее в отстойники прибавляют коагулянты-осадители. Чаще всего для этого используется алюминий (глинозем) - Al 2 (SO 4) 3 . Сернокислый глинозем действует на взвешенные в воде частицы двояким образом. Он имеет положительный электрический заряд, а взвешенные частицы - отрицательный. Разноименно заряженные частицы взаимно притягиваются, укрепляются и оседают. Кроме того, коагулянт образует в воде хлопья, которые оседая, захватывают и увлекают на дно взвешенные частицы. При применении коагулянта вода освобождается от большинства мелких взвешенных частиц, при этом срок отстаивания можно сократить до 3-4 часов. Однако при этом в воде еще остается часть мельчайших взвешенных веществ и бактерий, для удаления которых применяется фильтрация воды через песчаные фильтры. При эксплуатации фильтра на поверхности песка образуется пленка, состоящая из тех же взвешенных частиц и хлопьев коагулянта. Эта пленка задерживает взвешенные частицы и бактерии. Песчаные фильтры в среднем задерживают до 80% 6актерий.

Для того, чтобы освободить воду от остаточной микрофлоры, ее подвергают обеззараживанию.

8. ХЛОРИРОВАНИЕ ВОДЫ

Имеется несколько методов обеззараживания воды. Наиболее распространенным является метод хлорирования - обеззараживания воды с помощью хлорной извести или газooбpaзнoгo хлора.

Лабораторный контроль за коагуляцией и хлорированием воды имеет большое практическое значение. Прежде всего, необходимо определить дозы коагулянта и хлора, требуемые для очистки и обеззараживания данной воды, т.к. различные воды нуждается в разных количествах этих веществ.

КОАГУЛЯЦИЯ ВОДЫ СЕРНОКИСЛЫМ АЛЮМИНИЕМ

Как мы уже отмечали, наиболее распространенный метод коагуляции воды - обработка ее сернокислым алюминием.

Процесс коагуляции состоит в том, что раствор глинозема при прибавлении в воду вступает в реакцию с двууглекислыми солями кальция и магния (бикарбонатами) и образует с ними гидрат окиси алюминия в виде хлопьев. Реакция протекает по уравнению:

Al 2 (SO 4) 3 + 3Ca(HCO 3) 2 = 2A1(OH) 3 + 3CaSO 4 + 6С0 2

Потребная доза коагулянта зависит, в основном, от степени карбонатной (устранимой) жесткости воды. В мягкой воде, имеющей устранимую жёсткость меньше 4-5°, процесс коагуляции протекает плохо, т.к. здесь образуется мало хлопьев гидрата окиси алюминия. В таких случаях приходится добавлять в воду соду или известь (повышать устранимую жесткость), чтобы обеспечить образование достаточного количества хлопьев. Выбор дозы коагулянта имеет большое практическое значение, т.к. при недостаточной дозе коагулянта образуется мало хлопьев или нет хорошего эффекта осветления воды- избыток коагулянта придает воде кислый привкус. Кроме того, возможно последующее помутнение воды вследствие образования хлопьев.

9. ВЫБОР ДОЗЫ КОАГУЛЯНТА

Первый этап - определение устранимой жесткости. Берем 100 мл испытуемой воды, прибавляем 2 капли метилоранжа и титруем 0,1н HCL до появления розовой окраски. Устранимая жесткость рассчитывается следующим образом: количество мл HCL (0,1н), пошедшее на титрование 100 мл воды умножается на 2,8. Для точного определения дозы коагулянта целесообразно брать дозы 1% р-ра глинозема в соответствии с величиной устранимой (карбонатной) жесткости воды. В таблице расчета доз сернокислого алюминия показаны соотношения между устранимой жесткостью дозой коагулянта, а также показано количество сухого коагулянта, необходимого в том или ином случае для коагуляции 1л воды. Коагуляцию проводят в 3 стаканах. В первый стакан с 200мл испытуемой воды прибавляют дозу 1% раствора глинозема, соответствующую устранимой жесткости воды, а в два других стакана последовательно - меньшие дозы коагулянта. Время наблюдения - 15 минут. Выбирают ту наименьшую дозу коагулянта, которая дает наиболее быстрое образование хлопьев и их оседание. Пример: устранимая жесткость воды равно 7°. Этой величине жесткости по таблице соответствует доза 1% р-ра глинозема, 5,6 мл на стакан 200мл воды, которую прибавляют в первый стакан, во второй стакан прибавляют дозу, соответствующую 6° жесткости - 4,8 мл, а в третий стакан - 4мл. Стакан, в котором произойдет наилучшая коагуляция, покажет дозу 1% р-ра глинозема, необходимую для 200 мл воды, которую пересчитывают по той же таблице на сухой сернокислый алюминий в г на 1л.

10. ХЛОРИРОВАНИЕ ВОДЫ

Существует 2 способа хлорирования:

ѕ нормальными дозами хлора, исходя из хлоропотребности воды-

ѕ повышенными дозами хлора (перехлорирование).

Количество хлора, необходимое для обеззараживания воды, зависит от степени чистоты воды и, главным образом от загрязнения ее органическими веществами, а также от температуры воды. В гигиеническом отношении наиболее приемлемо хлорирование нормальными дозами, т.к. сравнительно небольшое количество вводимого хлора мало изменит вкус и запах воды и не потребует последующего дехлорирования воды.

Как правило, для хлорирования -воды берут такие количества хлорной извести, которые способны обеспечить наличие в воде 0,3-0,4 мг/л остаточного хлора на протяжении 30 минут контакта воды с хлором летом и 1-2 часов - зимой. Эти количества можно установить опытным хлорированием и последующим определением остаточного хлора в обработанной воде.

Хлорирование воды чаще всего производится 1% раствором хлорной извести.

Хлорная, или белильная известь представляет собой смесь гашеной извести - хлористого кальция и гипохлорита кальция: Са(ОН) 2 + CaCl 2 + CaOCl 2 . Гипохлорит кальция, контактируя с водой, выделяет хлорноватистую кислоту - НС1О. Соединение это нестойкое и распадается с образованием молекулярного хлора и атомного кислорода, которое и обладает основными бактерицидными эффектами. Хлор, который при этом выделяется, рассматривается как свободный активный хлор.

11. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ АКТИВНОГО ХЛОРА В 1% РАСТВОРЕ ХЛОРНОЙ ИЗВЕСТИ

Определение активного хлора в растворах хлорной извести основано на способности хлора вытеснять йод из раствора йодистого калия. Выделившейся йод титруют 0,01н р-ром гипосульфита.

Для определения активного хлора в растворе хлорной извести в колбу наливают 5мл отстоявшегося 1% раствора хлорной извести, прибавляют 25-50 мл дистиллированной воды, 5мл 5% раствора йодистого калия и 1мл серной кислоты (1:3). Выделившийся йод титруют 0,01н р-ром гипосульфита до слабо-розового окрашивания, затем добавляют 10-15 капель крахмала и титруют до полного обесцвечивания раствора. 1 мл 0,01н раствора гипосульфита связывает 1,27 мг йода, что соответствует 0,355 мг хлора. Расчет ведется по формуле:

где X - количество мг активного хлора, находившегося в 1 мл 1% раствора хлорной извести- а - количество мл 0,01н р-ра гипосульфита, пошедшее на титрование- v - объем воды, взятой для анализа.

12. ОПРЕДЕЛЕНИЕ ПОТРЕБНОЙ ДОЗЫ ХЛОРА

При опытном хлорировании исходят ориентировочно из того, что для чистых вод с большим содержанием органических веществ (2-3 и даже 5 мг активного хлора на 1 л) в воду добавляют такое количество 1% раствора хлорной извести, чтобы активного хлора с избытком хватило для хлорирования исследуемой воды и осталось некоторое количество остаточного хлора.

Метод определения

В 3 колбы наливают по 200 мл исследуемой воды и добавляют пилоткой 1% р-р хлорной извести (1мл которого содержит примерно 2 мг активного хлора). В первую колбу добавляют 0,1 мл хлорной извести, во вторую 0,2 мл, в третью - 0,3 мл, после чего воду перемешивают стеклянными палочками и оставляют на 30 минут. Через полчаса приливают в колбы по 1 мл 5% р-ра йодистого калия, серной кислоты и крахмала.Появление синего окрашивания указывает на то, что хлорпотребность воды полностью обеспечена и остался еще избыточный хлор. Окрашенная жидкость титруется 0,01н р-ром гипосульфита и рассчитывается количество остаточного хлора и хлопотребность воды. Пример расчета: в первой колбе посинение не наступило, во второй едва заметное, а в третьей колбе - интенсивное окрашивание. На титрование остаточного хлора в третьей колбе ушло 1 мл 0,01н р-ра гипосульфита, следовательно, количество остаточного хлора равно 0,355 мг. Хлорпотребность 200 мл исследуемой воды будет равна: 0,6-0,355=0,245мг (если исходить из расчета, что 1 мл содержит 2 мг активного хлора, то в третью колбу внесли 0,6мг активного хлора). Хлорпотребность исследуемой воды будет равна: (0,245*1000)/200=1,2 мг.

Прибавим к 1,2 мг 0,3 (контрольный остаточный хлор), получим потребную дозу хлора для исследуемой воды, равную 1,5 мг на 1 л.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

1.Ознакомиться с содержанием данного методического пособия.

2.Получить пробу воды для лабораторного анализа. Занести в протокол исследования сведения, полученные при обследовании водоисточника.

3.Провести определения физических свойств и химического состава краткого анализа.

4.Определить общую жесткость воды.

5.Провести определение содержания активного хлора в 1% р-ре хлорной извести.

6.Провести активное хлорирование с определением потребной дозы хлора.

7.Результаты исследования занести в протокол. Оценить качество исследуемой воды по физико-химическим показателям и данные обследования водоисточника. Составить заключение о возможности использования данной воды для хозяйственно-питьевых целей.

8.Рассмотреть ситуационные задачи по оценке воды по результатам санитарного обследования водоисточника и данным анализа воды.

13. КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ТЕМЕ

1. Физиологическое, санитарно-гигиеническое и эпидемиологическое значение воды.

2. Гигиеническая характеристика различных источников водоснабжения.

3. Требования к качеству питьевой воды (С ГОСТ 2874-82) и к качеству воды источников хозяйственно-питьевого водоснабжения (ГОСТ 17.1.3.00-77).

4. Методика санитарного обследования водоисточников (сущность санитарно-эпидемиологического обследования и санитарно-топографического обследования).

5. Понятие о биологических провинциях и эндемических заболеваниях. Биологически активные элементы в питьевой воде, их гигиеническая оценка.

6. Виды анализа воды (санитарно-химический, бактериологический, полный, краткий и т.д.).

7. Правила отбора проб воды для санитарно-химического и бактериологического анализов.

8. Гигиеническое значение физических и органолептических свойств воды и методы их определения (температура, цветность, запах, привкус, прозрачность и осадок воды при стоянии).

9. Активная реакция воды, ее нормы и методы определения.

10. Сухой остаток, его гигиеническое значение и метод определения.

11. Физиолого-гигиеническое значение жесткости воды и сущность метода ее определения.

12. Схема краткого санитарного анализа воды.

13. Биогенные элементы: азот аммиака, нитриты, нитраты, их значение и методы качественного определения.

14. Хлориды, их значение и методы определения.

15. Сульфаты, их значение и методы определения.

16. Соли железа, их значение и метод качественного определения.

17. Санитарное значение органических веществ в воде, источники их поступление в воду.

18. Методы очистки воды (отстаивание, коагуляция, фильтрация).

19. Методы обеззараживания воды.

20. Определение содержания активного хлора в 1% растворе хлорной извести.

21. Определение потребной дозы хлора для исследуемой воды

ЛИТЕРАТУРА

1. Руководство к лабораторным занятиям по коммунальным гигиеническим познаниям, ред. Генгарука Р.Д. Москва 1990.

2. Коммунальная гигиена. Под ред. Акулова К.И., Вуштуевой К.А., М. 1986.

3. Буштуева К.А. с соавт. Учебник коммунальной гигиены М. 1986г.

4. Экология природопользование, охрана окружающей среды Демина Г.А. М.1995г.

5. Улучшение качества мягких вод. Алексеев Л.С., Гладков В.А. М., Стройиздат, 1994г.

Размещено на Allbest.ru

...

Подобные документы

Физико-химическая характеристика питьевой воды. Гигиенические требования к качеству питьевой воды. Обзор источников загрязнения воды. Качество питьевой воды в Тюменской области. Значение воды в жизни человека. Влияние водных ресурсов на здоровье человека.

курсовая работа , добавлен 07.05.2014

Проблема питьевого водоснабжения. Гигиенические задачи обеззараживания питьевой воды. Реагентные и физические методы обеззараживания питьевой воды. Ультрафиолетовое облучение, электроимпульсный способ, обеззараживание ультразвуком и хлорирование.

реферат , добавлен 15.04.2011

Нормативно-правовая база, регулирующая качество питьевой воды в Украине. Рассмотрение органолептических и токсикологических свойств воды. Ознакомление со стандартами качества питьевой воды в США, их сравнение с украинскими и европейскими стандартами.

реферат , добавлен 17.12.2011

Исследование годовой динамики загрязнения воды в Верхне-Тобольском водохранилище. Методы санитарно-бактериологического анализа. Основные методы очистки вод непосредственно в водоеме. Сравнительный анализ загрязнений питьевой воды города Лисаковска.

курсовая работа , добавлен 21.07.2015

Влияние минерализации, нитратов, нитритов, фенолов, тяжелых металлов питьевой воды на здоровье населения. Нормативные требования к ее качеству. Общая технологическая схема водоподготовки. Обеззараживание воды: хлорирование, озонирование и облучение.

дипломная работа , добавлен 07.07.2014

Пробоотбор питьевой воды в различных районах г. Павлодара. Химический анализ качества питьевой воды по шести показателям. Проведение сравнительного анализа показателей качества питьевой воды с данными Горводоканала, рекомендации по качеству водоснабжения.

научная работа , добавлен 09.03.2011

Анализ показателей качества питьевой воды и ее физико-химическая характеристика. Изучение гигиенических требований к качеству питьевой воды и основные источники ее загрязнения. Значение воды в жизни человека, влияние водных ресурсов на его здоровье.

курсовая работа , добавлен 17.02.2010

Роль питьевой воды для здоровья населения. Соответствие органолептических, химических, микробиологических и радиологических показателей воды требованиям государственных стандартов Украины и санитарного законодательства. Контроль качества питьевой воды.

доклад , добавлен 10.05.2009

Характеристика природных вод и их очистка для промышленных предприятий. Описание установок для дезинфекции питьевой воды, применение ультрафиолетового излучения для обеззараживания сточных вод. Основы процессов и классификация методов умягчения воды.

контрольная работа , добавлен 26.10.2010

Физико-химическая характеристика питьевой воды, ее основные источники, значение в жизни и здоровье человека. Главные проблемы, связанные с питьевой водой, и пути их решения. Биологические и социальные аспекты взаимодействия человека со средой обитания.

    Категория: 

    Оценить: 

    Голосов пока нет

    Добавить комментарий

      ____    _   _   _   _   __  __   _        ___  
    | _ \ | | | | | \ | | | \/ | | | / _ \
    | |_) | | | | | | \| | | |\/| | | | | | | |
    | _ < | |_| | | |\ | | | | | | |___ | |_| |
    |_| \_\ \___/ |_| \_| |_| |_| |_____| \__\_\
    Enter the code depicted in ASCII art style.

    Похожие публикации по теме